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A variational principle is developed for dynamic problems with initial conditions of geome-
trically nonlinear theory of elasticity.

Approximations are introduced for displacements, deformations, stresses, velocities of
displacements and impulses and the complate variational principle is derived for the sim-
plest variant of nonlinear elastic shell theory of the Timoshenko<type and for the corres-
ponding adjoint problem.

The nonlinear theory of dynamics which takes into account the deformation of shear and
the inertia of rotation was examined in papers {1 to 4] for plates and in papers [5 to 8] tor
shells.

Variational principles for dynamic problems with initial conditions from linear theory of
elasticity were developed in papers [9 and 10], and for linear theory of the Timoshenko-type
for elastic shells in paper [lﬁ.

1, Variational principle of nonlinear theory of elasticity. The non-
linear theory of elasticity can be presented in the form of a variational problem which re-
quires the finding of the steady-state valus of the following functional:
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Here f1,..., fn are functions and their derivatives, encountered in the functional (1.1);
the prime designates a definite class of values and

[F(P,t)y=F (P, t—1) (1.3)
In fanctional {1.1) two systems of quantities appear as variable quantities
W = {ugeq, 2, &x "ikn “i; 5“‘} {1.4)

and the same quantities with primes, i.e. <W>*,
Their physical significance becomes apparent from steady«state conditions of the funce
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tional (1.1), These conditions can be divided into two groups.
For the initial system W the following system of Eqs. is obtained:
equations of motion

TFift4xi—at =0, rev, oty 1.5)
kinematic relationships
en =Ty s=u, ey="a(en+ eni+elh) (1.6)
relationships of elasticity
e By, m=pm, =1 (8 o™ .7

boundary conditions
ain, = Qf, PES (0<i<Hy=U, PES OI=<7 18

initial conditions

y=uP m=xn" PEV, t=0 (1.9}
If equations and relationships (1.5) to (1.9) are briefly denoted by
{(1.5) — (1.9)) = {L = 0} (1.10)
then the second group of conditions for the steady-state of functional (1.1) is represented
in the form
KLy =0 (1.11)

Relationships (1.11) determine the quantities <W> ’ and form the so-called adjoint
problem.

Thus, equations and relationships of nonlinear theory of elasticity (1.5) to (1.9} together
with the corresponding relationships of the adjoint problem (1.11) can be formulated in the
form of the variational principle

8 =20 (1.12)

2, Geometry of the shell and hypotheses of the theory. Let us exa-
mine a shell of constent thickness A and let us take advantage of the usual curvilinear co~
ordinates of the shell with & radius-vector of the undeformed body

B = r (2, 2% + 2°n (2, 2%) 2.1
where T and It are the radius vector and the unit vector of the normal to the mean surface of
the undeformed shell.

Let aggand bygbe the tensors of the first and second quadratic form of the mean sur-

face, i.e.
ar an
8yp =ToTp bga = rlns,(r. =3;; " 5}) (0, B=1,2) 2.2)
and V is the symbol for covariant differentiation in the metric of EPY.2

Correspondingly, components of the metric tensor of the undeformed three~dimensional
body

R
€= RiRy, =i (2.3)
are expressed through the metric tensor of the shell
Bap =PBoBel0yy a3 =0, gm=1, (" =8"— %) (2.4)
1f the displacement vector is written in the form
u = u,%r" 4 us*n (2.5)

then the following relationships apply

Ug = P‘csuﬂ" us = Us® 69"4! =Rq " (Vgty* — bpyis?)
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In order to derive the functional of the theory of shells from the functional (1.1) for the
three-dimensional elastic body it is necessary to utilize a certain system of hypotheses.In
order to obtain the simplest variant of nonlinear theory of the Timoshenko-type we shall
start from the following system of hypotheses.

1. The quantity x3b,4is considered sufficiently small to be neglected in comparison to
one ("3545 <« 1), i.e. we consider that the metric does not change with the thickness of the

hell
e Bt = 8,7 @7

b 5 = * ‘
v alts= Vaus* + b ugt, T = ?;::s (2.6)

2. We shall assume that the distribution of variable quantities over the thickness of the
shell corresponds to relationships

u b =v, + 2%, ug* = w (2.8)

8, =0, + 232, ss=J (2.9)

€qs = Nas + z’xaB, €z = O + Ty, e =1,, em= 0 (2.10)

Cus = Tap+ g Euy =18y  Em=+ 1y (2.11)

n, = 8, 4 284, Mg = A (2.12)

B= Ly B en o0 D@0 (6 4 2% (2.13)
& = %. f (% % 6B —0

P % T 4. E%f_’. Mo, 198 % J@)N%, =0 (2.14)

and that analogous equations also exist for the quantity <W>",
Here f(x3) is a given even function satisfying the conditions
h/z2
S Fa®) {4, (292 f}dz®=h1{1, k*, k} (2.15)
—h/2
3. In nonlinear tems entering into the functional (1.1) e, Jeyj, T¥e; ;' we shall neglect
after substitution (2.10) and (2.14) terms with the factor (x3)2,
From relationships (2.13) and (2.14) it follows that
h/2

(%8, mB, K, 4%} = S (%8, 2%%, %3, %% gy (2.16)

-—h 2

h/i2
{T*, M°, N%) = S {128, o3B3} gua @47

~h/2

Let the following notations be introduced for external loads

(Par Py} ={Qq Qs 2°Q) 52007 (2.18)

h/e
7% K K= | 1Qq Q 2%Q,}das (2.49)

-h/2

and also analogous notations for quantities with primes.
Further, we shall assume that volume forces are absent, i.e.

X; =0, X/=0 (2.20)

We shall introduce also the following notations:
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n/a
Vo Vs, © ) = 71? \ { fUs &-‘U }dz‘ @.21)
—h /%
T
(7% 0% 9%t = — S {u,’. w?, ‘:" } da’ (2.22)
-h/2
hig
8,° A° A%} = S {%,°, 7°, =% %} dot (2.23)
—Ah/a

and the snalogous notation for quantities with primes.

3. The complete variational principle. Now we introduce Expressions
(2.6) to (2.14) into the functional (1.1). Taking into consideration Expressions {2.15) to
(2.23) and the third hypothesis and performing integration over the coordinate x3 we have

J= S {~ 4 5 (m *Tys + iaa * €y — Pha® (C * Ta$ +“ %+ e )
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4+ 1/1a134P » (a3 —@g) + hA = (B —w) — h[v, (P, 0) —2,°]1 6% (P, 1) —
- 1s R g (P, 0) —-q)a"] A% (P ) —h[w(P, ) —w’]A(P, T)+ 8B, °y* (P, 1) 4~
+ AW (P, T) + AL Q% (P, T+ PP wv, +pewtm® .¢a>dV+

+ §<P“t0¢+K*w+K“‘q7¢ »dC +
3

+ § (g — Vo) # %Fng 4 (0— W) 0 k¥ng + (@, — D) smPrgydC  (34)

&
Ean& — M“‘*a*‘ + 2p,a‘“aas (3.2)

Here S is the mean surface of the undeformed shell, nare the components of the unit
vector of the nomal to the contour of the undeformed shell C.

Steady-state conditions of functional (3.1) will be two systems of equations with boundary
conditions and initial conditiona for the basic problem and for the adjoint problem. The
first system has the following fom:

equations of motion

Vat® =0k — 1% + pP=0, PeES; 0<t<x

Vak® +byggt®™® —AA' + p=0, V,m*® —gf —keb P1% — % A imf=0 (33
kinematic relationships
Nap=Valp = boghs  Xag=Valp 0= VW0 +bygt’, B =0y 1, =0,
3.4

6, =72, B=w, u\':@?.
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Yap = Yy ('lgg + Mgy + "l:nsy + mch)
Bag =2 (ap + Xga + Na'kpy + Mg%ay + Oalip + Oglty) @9
K, =11 (0 + 1g +11p)

elasticity relationships
T8 = hE** Py 4 - hha®P]

Y S VRV L N R NS e 3.6

(A+p)x=—ra"PEap Ba =00, A=pB, Ay=a,
028 = 707 (8,5 + 0y + NP+ MO ]
m®® = M 8P +qB), k=N T%Pe, + M*Pp, 3.7
ke = M*Pag, g% = NP (8, + 1%
boundary conditions
%0, = PP, m*fn,=KP, K*n,=K, PEC, O0<t(T (3.8)
va=V,, w=Vs, @Q,=®, P&Cy 0<t<T (3.9)

initial conditions
v, =79," w=u’, @, =q,° PeV, t=0
(3.10)
o L]
8, = 8., A= A°, A, = A4,
Let us introduce the notation

{(3.3) — (3.10)} = {M = 0} (3.11)

Taking into account Expression (1.2) the remaining conditions for the functional (3.1)
being stationary can now be represented in the form
My =0 (3.12)

Equations and relationships (3.12) form a linear system with respect to guantities with
primes. In the adjoint system (3.12) the same equations in quantities with primes correspond
to linear Eqs. of system (3.11). The nonlinear relationships (3.5) and (3.7) of system (3.12)
are replaced by linear relationships. The coefficients of these relationships are quantities
of the basic system. For example, relationship (see 3.5) for the adjoint problem has the form

Tag =3 (Mag’ + Ngo’ + [071May + [Mg1eMay" + [0g)ew; + [0]e05)  (3.13)

4

It is easy to see that the equations of the adjoint problem are equations of stability for
the motion of shells which is determined by relationships (3.3) to (3.10) but progresses in
time in the opposite direction in the interval (0, 7).

From the complete variational principle (1.12), where now the functional J is given
through (3.1), we may obtain all other modifications of the principle for nonlinear equations
of the theory of shells if certain groups of stationary conditions of this functional are satis-
fied first.

In conclusion, we note that in case of linearization of equations in the theory of shells,
the adjoint problem can be selected to coincide with the baaic problem and therefore in
variational formulation there is no need to broaden the initial problem because of the adjoint
problem [11].
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