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EQUATIONS 

A variational principle is developed for dynsmfc problems wfth initial condfdon8 of. gbome 
trically nonlinear theory of el8sdoity. 

Approximations are introduced for displacements, deformations, stresses, velocitfeo of 
displacements and impulses and the complete variational prindipls is derived for the sbn- 
plest variant of nonlinear elastic shell theory of the Timoshenho~type and for the COROW- 
ponding adjoint problem. 

The nonlineaw theory of dynamics which tshes into account the deformation of skeu md 
the inertia of rotation was examined in papers f 1 to 41 for plates and in papers (5 to 81 for 
shells. 

Variational principlea for dynamic problems with initial conditions from linear theory of 
elasticity were developed in 
for elastic shells in paper [l 

apers [9 and IO], and for linear theory of the Timoshenho-type 
s . 

1. Varfattonal principIc ol eonlinerr theory or eiarticfty. Thenon- 
linear theory of elaetidty can be presented fn the form of a variatfonal problem which re- 
quires the finding of the steady-state valae of the following funcdonal: 

.I= (- s ‘f~Efkj’8ik*~jl + IT~~*[&(~ --“/a (eik + ekt + etfekj)l +dk l (~~k--~~uk)- 

- %po+ 8 v* f n i 8 (sf - ~4’~) +x3 8 uf - [u* (p, 0) - u*y d (P. 7) + nc”la (P, 7))‘dV + 

+ <Qf 8 Uf>’ ds + <(uk - uk) + afknf>‘ds 
I t (1.f) 

s 

FsG= s F (P, t) G (P, T - t)dt, CL * M)’ = m’ l n4 + L 8 (iv) WI 
0 

CL (jr. . * ., j&’ 5 
R a& 
*, -at, xl 1 Is ‘#’ 

Here fp., f, UC) funcdon~ and their derivmtfves, mtcountered in 9. fnncdonal (1.1); 
the prims designates a doff&e elmso of vduem and 

[F P. t). = F (P, 7 - t) (4.3) 
in funet.fonrl (1.1) two 8y*tem8 of qumtitie8 8ppeu a0 vrrfable qoattfde8 

w = (r+rtk, *a, St&, T=, St, @) (1.4) 

and the same qusnddem with prfmcr,.f.e. <r>‘. 
Their phyoicrl sigPiflcanc4 booomea apparent from l tirdy=atate condidono of the fnne- 
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tionml (1.1). Thams conditionm cam bm divided into hvo groupa. 
For the initial l ymtcrm W the followiug l ymtmm of Eqm. im obtained: 

eqnmtionm of motion 

T&# + x’ - $t’* = 0, PE v, o<t<r (1.5) 

kinematic relationmhipm 

e*F; = T&F;, y = Uf’, eit; = ‘15 (Qk + ef i +efrkj) ‘ . 0 3) 
relationahipm of elamticity 

.$k rs @.il,. 
31’ Jli = pq, 

@ = +i (hjt + ejJb) $7) 

boundary conditions 

& ni = Qk, P E s, (0 < i < 4 q = Uf, P E s, (0 < = < 7) W8) 

initial conditions 

ui = I@, q = $0 PEV, t=o (i-9) 

If equations and relationships (X.5) to (1.9) are briefly denoted by 

((1.5) - (1.9)) SE {L = Of (i.iO) 

then the second group of conditions for the steady-state of functional (1.1) ir, reprencnted 
in the form 

<A>’ = 0 (i.ii) 

Relationshipa (1.11) determine the quantities <IO ‘and form the w-called adjoint 
problem. 

‘f%ns, equations and relationehipe of nonlinear theory Ff elasticity (1.5) to (1.9) together 
with the corresponding relationahips of the adjoiat problem (1.11) can be formalated in the 
form of the variational prindple 

8J = 0 (i.iB) 

2. Qeometry of the shell and hypothesee of the theory. Let am exa- 
mine a ahell of constaut thickness h and let as take advantage of th; aanal curvilinear co- 
ordinates of the ahell with a radius-vector of the undeformed body 

a=r(t’,2)+2n(t’*~) (2.1) 
where r and tt are the radias vector and the &it vector of the normal to the mean mrface of 
the undeformed mhelI. 

Let a4 and bd be the tensors of the first and second qaadratic form of the memn sur- 
face, i.e. 

= rate, be8 = - ~,LI~, 
ar 

% 
rr = - , (h/3= 1,2) iw 

ilXCL 

and V, ie the symbol for covarimnt differentiation in the metric of ao,g. 
~o~e~nd~gly, componenu of the metric tensor of the andefomred threw%mensional 

body 

ffik = R&A * R( =aR 
az’ 

(2.3) 

are expremmed throagb the metric tenmor of the shell 

g,$ - &y~&8av8, g,s = 08 go = i* (pB= = Ss” - dbg=) (2.4) 

If the dimplacemat&veetor fm written in the form 

u = us+= + U8% (2.5) 

that the following relationmhipm apply 

ua = Ir,%g** U8 - uE, T$,ue = pa’ (vBuY* - b,,Q) 
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;s,its = v,us* f b,,C’u$, (3.6) 

In order to derive the functional of the theory of shells from the functional (1.1) for the 
three-dimensional elastic body it is necessary to utilize a certain system of hypotheses.In 
order to obtain the simplest variant of nonlinear theory of the Timoahenko-type we shall 
start from the following system of hypotheses. 

1, The quantity r%,bis considered sufficiently small to be neglected in comparison to 
one (*3bd < 11, i.e. we consider that the metric does not change with the thickness of the 

pg = 6,” (2.7) 

2, We shall assume that the distribution of variable quantities over the thickness of the 
shell ‘corresponds to relationships 

ua * = YaL + xS(po* iIs* = w (2.8) 

SOL = 6, +x83& se = p (2.9) 

eaB = 9,j3 + “%g* ea3 -;I: w, + +a, es0 = L,, ess = 0 (2.10) 

“a$ = rlzfi + @a$’ E,$ = i (f? 6,* Qs=S$X~ (2.11) 

¶C., = 8, + xsn,, ng = A (2.12) 

@r3 = L t”B + 129 ma9 663 
h hs ’ 

= f f (2s) (P + SY’X) (2.13) 

(2.14) 

and that analogous equations also exist for the quantity <W> : 
Here f (x3) is a given even function satisfying the conditions 

h/2 

s 
f (rs) 11, (x3)?, 1}dx8=h 11, k’, k) 

--:1/z 

(2.15) 

3. In nonlinear terms entering into the functional (1.1) ek.‘jekj, &q~‘k we shall neglect 
after substitution (2.10) and (2.14) terms with the factor dr312. 

From relationships (2.13) and (2.14) it follows that 
h!% 

(@, ma@, k’, q”) =: (a”@, &fBe ga3, $a}&8 (z.iS) 

hia 

(Tap, Map, N”} = 
f 

(&, xBzap, za9)dd (2.17) 
-hl% 

Let the following notations be introduced for external loads 

(P,, P+ m,) = {Q,. Qs, xsQ,l IF_;,,, 

h/z 

(2.18) 

{Pa, lir, Ka} = 5 {Q,, Q. z’Q,Jdx8 
-h/2 

(2.19) 

and also analogous notations for quantities with primes. 
Further; we shall assnme that volume forces are absent, i.e. 

x, = 0, Xi’ = 0 

We shall introduce also the following notations: 

(2.20) 
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hIa 

<vat VD, Q),) =+ ) (va& $f U, dz’ 

-wt 
hi, 

i 
{noO, @, cp,“) = - 1223 

h S{ 
ub, u;, -uoo 

h’ I 
dfl 

-filn 
wa 

{B,“, A”, A,*) = 
s 

(I(=~, nrP, A=*) dz’ 
-hJS 

and the analogoos notation for quautitiee with primes. 

(2.2L) 

(2.22) 

(2.23) 

3, The complete varfattoaal p~h~tplfh Now we introduce Expressions 
(2.6) to (2.14) into the functional (1.1). Taking into consideration Expressions (2.15) to 
(2.23) and the third hypothesis and performing integration over the coordinate zS we have 

+2N’r [Ma- 11, (oa + i, + v$~)] -Ifa phe, * ea - */tiph8uy * ay - 

- yqph@ + 13 + t=@ * (‘tore - V=vB + bole4 + m =B * Ma@ - V=cpf$) + 

+ k, + lo= - V=a- b=/‘) + k*f= + (p, - b=p$) + q= l (i, - fP=) + he’ * (0, - *=‘) + 

+ l/,,hrA@ l (a B-q$)+hA*(P--w’) -h [v, (P,O)- l)aole= (P* Q- 

_ l/uhS[rpa(p,O) -q?="]~=(~. r)--h[m(P, f8- w*] A(p. r)+ e,*va (ps x) -+ 

+A"w(P,z)+A,~~=(P,r!+~=~~,+P*~+~"*CF=/ \hV + 

+ <P=+v=+K*w+K=*(P=)‘dC+ 

s: t 

+ i ((v, - v,) e taf’n8 + (w - W) * kan, + (CP, - a=) l maBngYdC (3.1) 

t 
~MY~=~~=B~Y~ + *a=y,@ (3.2) 

Here S is the mean au&es of the undeformed shell, n=are the componenta of the unit 
vector of the normal to the contour of the undefonnad *hell C. 

Steady-atate conditiona of functional (3.1) will he two syatana of qaationo with boundary 
conditione and initial conditiona for the basic problem and for tbe adjoint problem. The 
first system haa tba following form: 

equations of motion 

vat=@--baNka--heB’ +#=O, PES; O<t<s 

Vaku + baBta@ _ !JK + p = 0, VamaB - q@ - k*b=@ I’ - $ A@ + mB = 0 13.3) 
kinanatfc rrlatfoaohfps 

q,g C- Vavp - bagu, %a~ = V=Cpev m= = VaW + b=iV@s IL= = b=g@* ~(1. = P= 
(3.4) 

B = = oa” B =-u;, a= 
Y 9,' 
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map = May (aYe + q;!), ka = Na •J- TaOwO + 

k*l” I= Ma& 0’ QDL = A@ (fy= + rl@=) 
boundary conditions 

(3.5) 

Ay=ay 

MT+3 (3.7) 

t”@n 
a 

= PB t m=Pn a = KB , k%, = K, P E 4, o<t<r f3.8) 

va = va, ID= vs. ‘p, =;;@a, PEG, O<t(T (3.9) 

initial conditions 

va = v=o, W = m”, q, ‘“[pa”, PEV. t=o 
(3.10) 

0, z- e,“, A = A”, A, = A,’ 

Let us introduce the notation 

((3.3) - (3.10)} = {U = 0) (3.11) 

Taking into account Expression (1.2) the remaining conditions for the functional (3.1) 
being stationary can now be represented in the fonu 

<M>’ = 0 (3.12) 

Equations and relationships (3.12) form a linear system with respect to quantities with 
primes, In the adjoint system (3.12) the same equations in quantities with primes correspond 
to linear Eqs. of system (3.11). The nonlinear relationships (3.5) and (3.7) of system (3.12) 
are replaced by linear relationships. The coefficients of these relationships are quantities 
of the basic system. For example, relationship (see 3.5) for the adjoint problem has the form 

748 ’ = ‘is c-l,fi’ + Qrr + Irlo,. Q-i~y i- Irl~l+‘foru’ + [@,l*yJ + rqJ*qJ (3.131 

It is easy to see that the equations of the adjoint problem are equations of stability for 
the motion of shells which is determined by relationships (3.3) to (3.10) but progresses in 
time in the opposite direction in the interval (0, 7). 

From the complete variational principle (1.121, where now the functional I is given 
through (3.1), we may obtain all other modifications of the principle for nonlinear equations 
of the theory of shells if certain groups of stationary conditions of this functional are satis- 
fied first. 

In conclusion, we note that in case of linearization of equations in the theory of shells, 
the adjoint problem can be aelected to coincide with the basic problem and therefore in 
variational formulation there is no need to broaden the initial problem because of the adjoint 
problem [II]. 
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